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A numerical method is described for solving three coupled sets of nonlinear ordinary 
differential equations of the second order which arise in the study of the steady axially 
symmetric motion of an incompressible viscous fluid contained between two concentric 
rotating spheres. The flow variables are expressed as series of orthogonal Gegenbauer 
functions with variable coefficients, thus reducing the equations of motion to ordinary 
differential equations with two-point boundary conditions. The boundary conditions for 
the stream function are utilized to obtain an integral condition which permits one of the 
sets of equations to be solved using step-by-step methods. Numerical solutions are obtained 
for values up to 2000 of the Reynolds number based on the radius of the outer sphere. 
Results for the stream function and the torque required to rotate the spheres are compared 
with those obtained by previous investigators. 

1. INTRODUCTION 

The problem of finding the motion of a viscous fluid between two concentric spheres 
rotating about a common axis with different angular velocities has recently drawn 
considerable attention because of its interest in engineering design and geophysics. 
Singular perturbation solutions for large Reynolds number have been presented by 
Bondi and Lyttleton [I], Proudman [2], Carrier [3], Stewartson [4] and Pedlosky [5]. 
For small Reynolds numbers, Haberman [6], Ovseenko [7], Langlois [8] and Munson 
and Joseph [9] attempted solutions in powers of the Reynolds number. Munson and 
Joseph also determined the basic flow at higher Reynolds numbers by using a series 
truncation method in terms of Legendre polynomials. Pearson [IO] calculated the 
time-dependent rotationally symmetric motion for cases in which one (or both) of the 
spheres is given an impulsive change in angular velocity, starting from a state of 
either rest or uniform rotation, for Reynolds numbers from 10 to 1500. Recently 
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Greenspan [I l] integrated numerically the steady-state equations and presented the 
results in the form of streamlines for a range of Reynolds numbers up to 3000. 

In the present paper, we describe details of a method of solving problems involving 
axially symmetric flow between rotating spheres by means of series truncation. The 
basic method was proposed by Van Dyke [12], [13] and an application to calculate 
the steady flow past a circular cylinder at small Reynolds numbers was given by 
Underwood [14]. Dennis and Walker [15] applied a similar method to the calculation 
of steady flow past a sphere, but using quite different numerical procedures and a 
different method of satisfying the boundary conditions in which an integral involving 
the vorticity was employed. A similar type of integral condition had been used by 
Dennis and Chang [16] in calculating steady flow past a circular cylinder and, 
subsequently, Collins and Dennis [17] used a time-dependent integral condition in 
studying flow past an impulsively started circular cylinder. The use of appropriate 
integral conditions is a feature of the present method also. The important point 
underlying the use of these conditions is that the stream function is determined by 
step-by-step integrations rather than by boundary-value methods. 

The stream function and other flow variables are expanded in series of orthogonal 
Gegenbauer functions in terms of the angle 0 of spherical polar coordinates (r, 19, #I), 
the motion being independent of the angle 4. The series have coefficients which are 
functions of the radial variable r and on substitution in the Navier-Stokes equations 
it is possible to derive three sets of second-order ordinary differential equations for the 
functional coefficients subject to two-point boundary conditions. The equations are 
truncated by putting all functional coefficients after a certain stage in the series equal 
to zero. The finite set of equations which results from the truncation process is solved 
by a specialized numerical scheme. The difference between the present approach and 
the method of series truncation used by Munson and Joseph is that they used series 
of Legendre polynomials rather than Gegenbauer functions. The latter functions are 
found to be more appropriate, by virtue of their different orthogonality properties, to 
the differential operators which occur in the present problem. The method employed 
by Munson and Joseph for solving the differential equations and utilizing the boundary 
conditions is also different. 

The problem is formulated for the general case of flow between an inner sphere of 
radius rl rotating with angular velocity 52, about a fixed diameter and a concentric 
outer sphere of radius r2 rotating about the same diameter with angular velocity Q, . 
A Reynolds number R is based on the radius of the outer sphere and some typical 
angular velocity Sz, and is defined by R = r,%,,/v, where v is the coefficient of kine- 
matic viscosity. Calculations have been carried out assuming r2 = 2r, and for 
Reynolds numbers R = 100, 500, 1000 and 2000 in each of two cases. In one of these 
the inner sphere rotates with the outer one at rest giving Q, = Q, , 52, = 0. In the 
second the outer sphere rotates with the inner one at rest corresponding to 52, = 0, 
52, = Q, . The streamlines of the motion are compared where possible with those 
calculated by Pearson [IO] at large times after an impulsive start of the motion. 
Comparison is also made with the steady-state solutions of Greenspan [ll]. The 
torque required to rotate the moving sphere in either case is calculated. Munson and 
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Joseph [9] calculated the torque up to R = 1000 and the comparison is found to be 
good. Finally, it may be noted that the methods of the present paper can be applied 
with some modification to several problems of interest including that of a single 
rotating sphere in a fluid at rest as well as the case of a translating sphere in a rotating 
fluid. 

2. BASIC EQUATIONS AND ANALYSIS 

We consider the steady flow of a viscous incompressible fluid occupying the region 
between two concentric spheres which are rotating about a common axis through the 
centre. The flow is assumed to be symmetrical about the axis of rotation which is 
taken as the axis 19 = 0 of spherical polar coordinates (r, 19, $) with origin at the 
centre of the spheres, and hence all quantities are independent of 4. We introduce the 
transformation [ = In(r/r,), where r2 is the radius of the outer sphere, and then we can 
relate the dimensionless velocity components (a,. , a8 , v6) to the dimensionless 
functions 4 and Q by the relations 

(1) 

Here # is the dimensionless stream function. The Navier-Stokes equations governing 
the motion can then be written (see [2,9]) in the form 

a+ aQ a* ai. 
-----3 ae a[ af a0 (2) 

+ 2 [(cot e+- 
aQ 

-g)i-(cots+~ Q 1 II , (4) 

where 
a2 

O2 = af2 
---&+sinB-$(&$). 

If the actual physical dependent variables are denoted by starred 
dimensional velocity components are given by 

v* - appe 
-a**'ar * -7%x3 

p,* = 
r sin 6 ’ urn* i2* =rsin8’ 

quantities, the 

(5) 

where 
+* = r23Qo*, 9* = r2Y.2,Q, (6) 
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and A&, is a representative angular velocity. This could be taken as the angular velocity 
of either sphere. The Reynolds number is defined by R = r,Y&,/v, where v is the 
coefficient of kinematic viscosity. 

In the following we associate angular velocities Ln, and Q, with the inner and outer 
spheres respectively and denote by &, the value of [ at the inner sphere r = rl . Thus 
in terms of the quantities 

w1 = 2r12Ql~r22120 , 02 = 252,lQo, 5, = Wl/r2~9 (7) 

the boundary conditions can be stated as 

* = aglaf = 0 when e = &, and 4 = 0, (8) 
i-2= +wl sin2 19 when 5 = [,, ; 

Sz = &u2 sin2 0 when .!J = 0. 
(9) 

In order to apply the series truncation method we now assume the expansions 

where ZA = cos 13 and I&) are the Gegenbauer functions of the first kind and of 
order n (see [18, 191). The functions I&) are appropriate to the operator D2 which 
appears in (2)-(4) because of their orthogonality properties. They are even or odd 
functions of Z.L accordingly as n is even or odd, and the appearance of only even or 
odd functions in each of the expansions (10)-(12) reflects the symmetry of Q and 
antisymmetry of # and 5 about 8 = 7~12. 

If the expansions (11) and (12) are substituted into (3) we obtain the infinite set of 
equations 

g; - g: - 2n(2n + 1) g, = -e%, ) (13) 

which hold for positive integer values of n, where the prime denotes differentiation 
with respect to e. The conditions (8) on I/I become 

If we introduce the substitution 

g, = ec12G 12 (15) 
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into (13), we get the set of equations 

G,” - k2G, = -_eSEPh R = r Vl, 

where k = (Zn + 4). The corresponding boundary conditions are 

G,(&) = G,(O) = 0; G;(&,) = G:(O) = 0. 

(16) 

(17) 

We now multiply (16) by e*ke and integrate it with respect to 4 from 4 = &, to ,$ = 0. 
In view of (17) we obtain 

I 
0 

r,,ekkC d[ = 0 for all n. 
co 

(18) 

The set of conditions (18) for positive integer values of n is in effect two sets obtained 
by taking the positive and negative signs in the exponential. We shall describe later 
how (18) may be employed to calculate r&J and r,(O) for a given value of n. This 
determines h,(&) and h,(O) by the equality defined in (16) and then it is possible to 
construct a simple step-by-step procedure to determine G,@ in which all of (17) are 
finally satisfied. 

If the expressions (10)-(12) for Sz, $ and 5 are substituted into (2) and (4), it is 
found by standard methods of orthogonal functions that we can derive two sets of 
ordinary differential equations of the form 

fl:+(A,--l)f:,-{2n(2n--)+B”)f,=R,, (19) 

h: + (C, - 1) h; - {2n(2n + 1) + D,} h, = S,, . (20) 

Thus the set of equations (19) is obtained by expressing (2) in terms of the variable ,u, 
dividing each side by 1 - p2, multiplying by the general term of (10) and integrating 
with respect to p from p = - 1 to CL = 1. A similar procedure is used to obtain the 
set (20). In both cases it is necessary to utilize the orthogonality properties of the 
functions I&). These are briefly noted in an appendix to the present paper together 
with a brief note on some formulas for the evaluation of integrals involving triple 
products of Gegenbauer functions which are given next. 

The quantities A,(& B&), R,(n in (19) and C&), &(&, &(n in (20) can all be 
expressed in terms of the functions&@), g&), h&f) and the quantities L(Z, m, n) and 
M(I, m, n) defined by 

(21) 

(22) 
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where the prime in (21) denotes differentiation with respect to p. It may be shown 
(see appendix) from the basic results described by Talman [20] that 

L(l, m, n) = [l(l+ 1) m(m + l)l-“” ({ -“1 a)(:, 7 ;)9 (23) 

(I - l)(l + 2) 
M(ry m9 n, = [ Imn(f + l)(m + l)(n + 1) 1 112 

( 
I 

X -1 -“1 J(:, ; “0) - L(k m 4, (24) 

where 

are the 3 - j symbols. 

( 
.A j3 j3 

ml m2 m3 ) 

A table of 3 - j symbols and the algorithm to compute them numerically is given 
by Rotenberg et al. [21]. 

Expressions for the coefficients in (19) and (20) may now be given as 

A,=Re-faa, F L(2n-1,2n-1,2m)g,, 
WL=l 

(25) 

B, = Re-caa, 2 L(2m, 2n - 1,2n - 1) g; , 
77I=l 

(26) 

C,, = Re-“b, f L(2n, 2n, 21) g, , 
Z=l 

(27) 

D, = Re+b, g [2L(2n, 2n, 21) g, + (L(21, 2n, 2n) + ~(21, 2n, 2n)) g’J, 
Z=l 

(28) 

R, = Rectaa, f f’ {L(2m, 2n - 1, 21 - l)figh - L(21- 1, 2n - 1, 2m) fig,,,} 
Z=lrn=l 

- Bnfn + Anfb, 

S, = Re-cb, f f [{L(21, 2n, 2m) gih, - L(2m, 2n, 21) g,hk} 
kl nz=l 

(29) 

+ {2L(2m, 2n, 21) g, + M(21, 2m, 2n) g;} h, - {2L(21 - 1, 2n, 2m - 1)fi 

+ M(21 - 1, 2m - 1, 2n) f ;} fm] - D,h, + C,,h:, . (30) 

In all of these formulas 

a, = 2n(2n - 1)(4n - I), b, = 2n(2n + 1)(4n + 1). (31) 
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A set of boundary conditions for Eqs. (19) may be obtained by substituting 
expansion (10) into conditions (9), from which it is found that 

fi(to’3 = ~1 , fi(O> = w2 ; fXo) = fXO> = 0 for n > 1. (32) 

There are no direct boundary conditions for (20), but values of h,(&) and h,(O) may be 
found indirectly by satisfying the set of integral conditions (18). The theoretical 
problem is now to solve the sets of equations (16), (19), and (20) subject to con- 
ditions (17), (18), and (32). In practice the sets of equations must be truncated. A 
truncation of order n, is defined by putting all functions in the expansions (lo)-(12) 
with subscripts IZ > no identically equal to zero and solving the 3~2, second-order 
differential equations with associated boundary conditions which result. Numerical 
solutions are obtained by an iterative procedure, details of which are described in the 
next section. 

3. NUMERICAL METHODS 

The equations are solved numerically by the usual procedure of dividing the range 
5 = to to 4 = 0 into p intervals of uniform grid size h. Each equation of the truncated 
sets (19) and (20) is solved by approximating all derivatives by means of standard 
three-point central-difference formulas. Thus at a general point .$ the approximation 
to (19) can be written as 

[I - 8&4dO - wx5 - 4 - [2 + wwn - 1) + &dD>lfn($ 
+ 11 + w&a(S) - l>lfn(e + 4 = h2&(0. (33) 

Approximations to A,(,$), B,(t) and R,(t) are known at every internal grid point 
during the course of the iterative method. At a given stage the tridiagonal matrix 
problem associated with (33) subject to the conditions (32) is solved by the stable 
direct method described by Rosser [22]. A typical equation of set (20) is likewise 
approximated by 

[l - !d4G(O - 1)l ME - A) - P + h2Pa + 1) + Q&@31 hm 
+ [l + 4&G(E) - 111 M5 + h) = ~“UO, (34) 

and this set of equations is solved for h,(f) by the same method with boundary 
conditions 

k(fo) = % > km = fin 3 (35) 

where 01, and /& are calculated from (18) in the manner which follows. 
The condition obtained by taking the positive exponent in (18) is 

I 
0 

r,ekC de = 0. 
fo 

(36) 
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If (36) is expressed as a quadrature formula in the range 5‘ = &, to 5 = 0, we get the 
approximation 

c,r,(&l) + c,r,(& + h) + .** + c,r,(O) = 0 
or 

c,rXd + w,(O) + Q = 0, (37) 

where c, are the coefficients of the quadrature formula (outlined below) and Q is the 
sum over internal values. Similarly the second integral (18) with the negative exponent 
gives 

cl,r,(&,> + c;r,,(O) + Q’ = 0. (38) 

We can now solve (37) and (38) to get 

r,(h) = <c,Q’ - cLQ)/(wL - c&J~ (39) 

r,(O) = (d,Q - coQ?/(w~ - &J, (40) 

and hence 01, and /I,, from (35), since r, = -h e3Elz. 
We could use any suitable quadrature formula”to give the c, , for example Simpson’s 

rule by takingp to be even. However, we use a specialized formula based on Simpson’s 
rule, in which we deal with the integrand r,ek’ in (36) by replacing r, by a parabola 
over three consecutive points and then integrating by parts. This procedure is much 
better than replacing rnekf by a parabola because this latter function varies extremely 
rapidly with ,$ when k is only moderately large, whereas rn varies relatively slowly. 
Thus by replacing r, by a parabola over three consecutive points we can get accurate 
values of the integral in (36) even if k is large. In effect this means that we can use the 
same grid size h to approximate the condition (36) accurately for any value of k. 
The same principle holds for any type of polynomial approximation,to r, but we shall 
confine ourselves to the case of a second-degree polynomial here. 

If we suppress the subscript on r, for the moment and assume that with a uniform 
grid h 

r(5) = a + b-t + 4” (41) 

over any three successive values t1 , g2 , 5, of g, we easily find that 

s 
fa 

rekB df = 1 [r3ekEs - rIckpI] 
El k 

- $ [(b + 2cg3) ekEa - (b + 2cg,) ekEI] + $ (ekEa - ekEI). (42) 

A similar formula holds for the definite integral from g = g1 to g = g2 by replacing 
g3 by g2 in (42). In either case we fit (41) to the values rl , r2 and r3 of r at 5 = g, , 
5 = & and g = 5, to obtain 

b + 2cf, = (4r, - 3r, - r3)/2h, 

b + 2cf, = (rl - 4r, + 3r3)/2h, 

b + 2cf, = (r, - r,)/2h, 
c = (rl - 2r, + r3)/2h2. 

(43) 
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With the necessary substitutions from (43), the formula (42) is now used to obtain 
(37) by applying it to each consecutive pair of intervals from t = 5, to E = 0 and 
summing, assuming p to be even. We need only change the sign of k in (42) for it 
to be appropriate to the second integral in (18) with the negative exponent and a 
similar procedure of summing gives (38). It follows from (42) and (43) that 

1 e -“my,, = c; = - - _ 
k & (3 + ezkh) - & (1 - ezka), (44) 

1 e”$i = c, = - - 
k 

& (3 + e-akh) + & (1 - e-“““). 

Hence from an approximation to h,([), and thus r,(f), at internal grid points we can 
calculate an approximation to CY, and Ign in (35). 

When this approximation to 01, and pn has been calculated for a given n, the 
function r,(e) is known approximately at all grid points including [ = & and 6 = 0. 
We can now integrate Eqs. (16) by step-by-step methods, by introducing the functions 
defined by 

u = G’ - kG, v = G’ f kG, (46) 

and then u and v satisfy 

u’ + ku = r, v’ - kv = r, (47) 

where the subscripts on the functions G, and r, have again been dropped temporarily 
for convenience. It follows from (17) that the boundary conditions for u and v are 

u=v=o, when 4 = &I and ( = 0. (48) 

If the first equation of (47) is multiplied by ekE and integrated over the range covered 
by the three successive points t1 , 4, and 5, we obtain 

Us = y’u, + eekra I 
f-3 

rek’ d& (49) 
El 

where y = e-lch. We now utilize (42) and then the whole of the last term on the right 
side of (49) can be replaced by the right side of (42) with eke3 replaced by unity and ek% 
replaced by y2. This gives a step-by-step formula to construct a numerical solution for 
u at all grid points starting from u(&,) and u(& + h) and it is stable since y < 1. 
Moreover we can obtain u(& + h) from the known value u(&) = 0 by employing a 
formula similar to (49) in which uQ and & are replaced by u2 and & respectively and y2 
is replaced by y. The necessary integral from e = & to e = & is then found by 
replacing 5, by 5, in (42) and using the second of (43). Finally it is easily shown that 
repeated application of (49) starting from u(&) = 0 must lead to u(O) = 0 provided 
that (36) has been satisfied. This gives a check on the numerical procedures. 
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Just as the stable direction of integration of the first of (47) is the direction of 
increasing 5, the stable direction for the second of (47) is that of decreasing 5. If we 
multiply the second equation of (47) by eekE and integrate from 5 = II to .$ = t3 
we find that 

I 
c3 

vl = y2v2 - eke1 rep” df, (50) 
El 

and the integral is given by (42) with the sign of k changed. This stable formula can be 
used to construct a numerical solution for v starting from v(0) and u(--h). A formula 
to get 0(---h) from v(0) is obtained from (50) by replacing v1 , (I and y2 by v2 , 5, and y 
respectively. The necessary integral is obtained from (42) by replacing f, by tZ . 
Again the solution for v obtained by repeated application of (50) starting with 
v(0) = 0 will come out to be zero at [ = f0 if the condition (18) with the negative 
exlsonent has been satisfied. From the solutions for u and u we obtain both G and G’ 
from (46). The method is very rapid since it requires no iteration. Some further details 
have been discussed by Dennis and Chang [23]. 

The iterative sequence of steps of solving the various equations for a given truncation 
is carried out by constructing sets of approximations f;%“‘(t), g;?(f), h~~)(Q 
(n = 1, 2,..., n,), starting from an initial set corresponding to m = 0. When this has 
been completed to stage m the following steps are carried out to complete the next 
stage. The set of equations (19) is solved subject to (32) by matrix inversion using the 
most recently available information for A,@, B,(t) and R,(t). Each solution member 
which results is denoted by f ~mm+llz) (5) and then the next approximation is defined by 

fp+l'(~) = &fp+llz) (0 + (1 - K) f ?‘(O (n = 1, 2 ,...) n,). (51) 

Here K is an empirically chosen parameter in the range 0 < K < 1. The set of 
equations (20) is now solved subject to the most recent estimates of 01, and pn in (35) 
and with the most recently available data for C,([), o&) and S,(t). A solution 
member is again denoted by h~mi1f2) (0 and the next approximation is defined by 

h:m+l’(tJ) = Kh:m+1’2’(f) + (1 - K) h:$(f) (n = 1, 2,..., n,). (52) 

Revised estimates of 01, and pla are now obtained by satisfying (18) in the manner 
already described and the set of equations (16) is then solved. Each equation is solved 
in sequence by the given step-by-step method and thus from (15) we arrive at the set 
of functions gkm+r’(l) (n = 1, 2,.. ., n,). This ends one complete cycle of the iterative 
procedure. 

The sequence of iterations is continued by repeating this cycle until convergence 
is obtained. This is described by the test 

for all n = 1, 2 ,..., n, . Here E is a preassigned tolerance which is a parameter of the 
solution procedure. The test (53) is completely satisfactory because the boundary 
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values of the functions h,@ are the last of the properties of the solution to settle 
down as the iterations proceed so that by the time (53) is satisfied all the functions have 
converged to acceptable limits throughout the whole solution field. The processes 
defined by (51) and (52) are, of course, averaging processes and the quantity K is a 
parameter of the solution. If the iteration procedure tends to be divergent in any given 
case, a reduction of the value of K often leads to convergence. Generally speaking, 
K has to be reduced as the Reynolds number increases. The other main parameters of 
the solutions are the grid size h and the number of terms no which is used to define 
the truncation. An attempt. has been made to determine the effect on the numerical 
solutions of varying all of these parameters. One of the crucial parameters is obviously 
the number of terms n, utilized in each of the expansions (lo)-(12). The parameter n, 
must be increased with increasing Reynolds number for the reason that more terms 
are required as the flow becomes more complicated. In the calculations carried out the 
maximum value of n, used for a given Reynolds number was based on a balance 
between obtaining physical properties of reasonable accuracy without an unreasonable 
amount of computation. 

In the results described in the following section a range of Reynolds numbers from 
R = 100 to R = 2000 has been covered for the two cases Qn, = Q, , 52, = 0 and 
Q1 = 0, Sz, = !S,, . In every case the solution procedure was started by calculating 
the first truncation (n, = 1) and then determining higher truncations by starting from 
the previous truncation and adding one term to each of (lo)-(12), assuming the 
initial approximation to each new set of terms to be zero. A suitable initial approxi- 
mation for the first truncation is 

f%O = % + (WI - w2) lx0 7 A% = 0, h$‘(.$) = 0 (54) 

for &, < f < 0. This was used to start the two cases at R = 100. The initial approxi- 
mation to the first truncation at higher Reynolds numbers was taken as the corre- 
sponding final solution at n, = 1 for the previous value of R. 

4. CALCULATED RESULTS 

The results given in the present section were obtained taking the radii of the 
spheres such that r2 = 2r, to facilitate comparison with previous work. This gives 
&, = --In 2. Two quite small grid sizes h = -t,/80 and h = -&/160 were used in 
obtaining numerical solutions, the first for R < 500 and the second for R 2 500. 
The parameters corresponding to the results to be presented are given in Table I. 

One of the quantities of interest is the torque which acts on either of the spheres. 
Munson and Joseph [9] have determined the torque on the spheres in various cases 
including the two considered here. The torque acting on a given sphere may be found 
from the expression 

M* = ‘= I s a r3 sin2 t%,*, df3 d$, 
d=O a=0 
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TABLE I 

Parameters of Calculations 

R % we h x 10’ K c x 1v n, 

loo 0.5 0 0.866434 0.06 0.1 5 

500 0.5 0 0.433217 0.06 0.1 7 

1000 0.5 0 0.433217 0.04 0.1 8 

2000 0.5 0 0.433217 0.04 1.0 8 

100 0 2.0 0.866434 0.06 0.1 5 

500 0 2.0 0.433217 0.04 0.1 6 

1000 0 2.0 0.433217 0.04 0.1 7 

2000 0 2.0 0.433217 0.04 0.1 7 

where T& is the appropriate component of the stress tensor given by 

(56) 

and p is the density of the fluid. The integral in (55) is taken over either sphere and if 
we substitute &$/ad = 0 in (56) and utilize (5) and (6) it is found that 

n M* = 2npvrz3520ef 
I( 

$ - 252) sin B dt?, (57) 
0 

where both [ and the integrand are appropriate to the sphere concerned. A dimension- 
less coefficient M may now be defined by the relation M* = (ST/~) pvra*sZ,M. On 
substitution of this in (57) and use of expansion (10) for Q the results 

MI = HfXto) - 24X50)>, M, = W;(O) - %W (58) 

are obtained for the coefficients appropriate to the inner and outer spheres respec- 
tively, where the ratio rz = 2r, is assumed. 

In Table II we give calculated values of Ml for the case !Z$ = In, , In, = 0 and 
values of MS for the case Q1 = 0, L& = Q. . In both cases the results are based on 
solutions obtained using the parameters in Table I. Munson and Joseph have given 
graphical results for 7Ml/3 up to R = 1000 in the first case and for 7MJ3 up to 
about R = 900 in the second case. The agreement with the present results is excellent 
in both cases. For example the numerical value of 7M,/3 at R = 1000 in the first case 
is very slightly below 2.3 from Munson and Joseph’s graph, while the corresponding 
value from Table 2 is 2.28. Two checks have been applied to the present results. In the 
first place the variation of the torque with the order n, of the truncation was noted. 
It was found that when n, had reached the values given in Table I the values of Ml 
and MS given in Table II did actually represent true limits to the precision quoted. 
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TABLE II 

Nondimensional Torque for Rotating Spheres 

J;), = 4, R, = 0 9, = 0, 52, = Q. 
R --Ml M% 

100 0.446 0.500 

500 0.738 0.715 

loo0 0.978 0.864 

2000 1.285 1.069 

As a second check the results in both cases at R = 500 were obtained using two 
separate grids h = -&,/80 and h = -&,/160. For the coarser grid the results com- 
parable with those.in Table II were found to be iV1 = -0.738, M, = 0.720 and there 
was a similar general type of agreement for all properties of the solutions on the two 
respective grids. The finer grid was therefore judged to be adequate at R = 500 and 
was assumed to be adequate for R > 500. 

The streamlines of the motion in a plane of constant qS were calculated in each of 
the eight solutions. The effect of the order of the truncation n, on the streamlines was 
studied and it was judged that the results obtained for the values of n,.given in Table I 
were adequate except for the one case R = 2000, Sz, = Q, , Q, = 0. In this case the 
streamlines did not appear to have reached a consistent pattern at n, = 8 and one or 
two further terms would probably be necessary in the series (1 O)-( 12) with considerably 
more computation. The details of this case have therefore been omitted. It is found 
that the patterns for the case R = 100, QR, = Q0 , Q2 = 0 agree in character with 
those given by Greenspan [ll, Fig. 41 and those for the case R = 100, Sa, = 0, 
Dz = In, agree precisely with the results of Pearson [lo, Fig. 31 for the essentially 
steady-state solution. The present details of these cases have been omitted for this 
reason. 

Calculated streamlines for the case Q, = J&, , Sz, = 0 are shown for R = 500 in 
Fig. 1 and for R = 1000 in Fig. 2. There is excellent agreement between Fig. 2 and 
the details of the late time solution for the corresponding situation given by Pearson 
[IO, Fig. lo]. The streamlines for R = 500, 1000 and 2000 respectively in the case 
Qn, = 0, L?, = Q, are given in Figs. 3-5. Once again there is very reasonable agreement 
between the details of Fig. 4 and the corresponding patterns of the late time solution 
of Pearson [lo, Fig. 41 in both general character and in the magnitude of the stream 
function. There is no evidence in the present solution for R = 1000 of the additional 
closed streamline found by Greenspan [I 1, Fig. 91 in the upper part of his diagram 
for this same case and there are substantial numerical discrepancies in the magnitude 
of the stream function in several places. Moreover, the general development of the 
present solution in the region 8 < 45” as R increases from 1000 to 2000 does not 
appear to be completely consistent with the subsequent development found at 
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FIG. 1. COUtOUrS Of -10 for R = 500, 

outer sphere is at rest. 
8, = Q, , Q, = 0. The inner sphere rotates and the 

FIG. 2. Contours of -lo44 for R = 1000, Q, = Q,, ,9, = 0. 

FIG. 3. Contours 
outer sphere rotates. 

of lo&$ for R = 500, Q, = 0, Qs = Sa, . The inner sphere is at and the 
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FIG. 4. Contours of 10’4 for R = 1000, Q, = 0, Q, = Q, . 

FIG. 5. Contours of lO$h for R = 2000, Q, = 0, Q, = Q, . 

FIG. 6. Contours of anguhr velocity for R = 1000, fi', = 0, Q, = i&, . 

581/28/3-2 
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R = 3000 by Greenspan [ll, Fig. 141. Contours of constant angular velocity for the 
case Q, = 0, 52, = Sz,, , R = 1000 are given in Fig. 6. These may be compared with 
those obtained by Pearson [lo, Fig. 51 for the corresponding late time solution. 

On the whole the above comparisons seem to be satisfactory and tend to confirm 
that the method is adequate. The series truncation method has the advantage of 
reducing the problem to the solution of ordinary differential equations but the 
problem of taking an adequate number of terms n, in each of the series must then be 
faced since the amount of computation increases rapidly as n, increases. The main 
feature of the application discussed in the present paper is the solution of the set of 
equations (16) subject to (17) by means of step-by-step methods. The method described 
was found to be extremely rapid and accurate. In all the computed cases described 
above the final solutions of (16) were found to satisfy (17) to at least eight or nine 
decimal places. The formulation and method described is applicable to a number of 
other problems involving rotating fluids and spheres. 

APPENDIX 

In terms of the variable p = cos 0 and the associated Legendre functions of the 
first kind 

the Gegenbauer functions satisfy the relations 

G+*(P) = -p&49 WV 

where the prime denotes differentiation with regard to CL. The orthogonality properties 
are 

s 
’ 

-1 
z$“z;/) dp = 0, m # n, 

2 (61) 

= n(n - 1)(2n - 1) ’ m = n, 

provided neither m nor n is 0 or 1. 
On substitution of (59) and (60) in the integral (21) we obtain 

(62) 
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This integral may be evaluated in terms of the 3 - j symbols by introducing the 
spherical harmonics defined by Talman [20, pp. 164-1681 in the form 

where the bar denotes the complex conjugate, and utilizing the result 

It is to be noted that (k 7 .J is interpreted as zero unless both 1 I - m 1 < II < I+ m 
and s = p + q, and can also be zero in other individual cases. Result (23) follows 
at once from (63)-(65). 

Finally, result (24) follows in a similar manner by substituting from (59) into integral 
(22), utilizing the relation 

and applying results (63)-(65). 
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